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We introduce and analyze a general one-dimensional model for the description of transient patterns
which occur in the evolution between two spatially homogeneous states. This phenomenon occurs,
for example, during the Fréedericksz transition in nematic liquid crystals. The dynamics leads to the
emergence of finite domains that are locally periodic and independent of each other. This picture
is substantiated by a finite-size scaling law for the structure factor. The mechanism of evolution
towards the final homogeneous state is by local roll destruction and associated reduction of local wave
number. The scaling law breaks down for systems of size comparable to the size of the locally periodic
domains. For systems of this size or smaller, an apparent nonlinear selection of a global wavelength
holds, giving rise to long-lived periodic configurations which do not occur for large systems. We
also make explicit the unsuitability of a description of transient pattern dynamics in terms of a few
Fourier mode amplitudes, even for small systems with a few linearly unstable modes.

PACS number(s): 47.20.Hw, 47.20.Ky, 61.30.Gd

I. INTRODUCTION

The most simple situation considered in the context of
pattern-formation studies [1] is the one in which a homo-
geneous stable steady state of a system becomes unstable
at a threshold value of a control parameter, so that be-
yond threshold the new stable state is time independent
and with a well-defined spatial periodicity. In such a sit-
uation it is first generally aimed to describe some static
properties, such as the threshold value of the control pa-
rameter, possible wavelengths of the pattern, and possi-
ble higher-order bifurcations. Another set of interesting
questions is associated with the transient dynamics of the
pattern-formation process given an initial unstable homo-
geneous state [2]. A different physical situation is the one
of transient pattern formation during the temporal evo-
lution between two homogeneous steady states: In this
case an homogeneous stable steady state becomes unsta-
ble beyond a given threshold and the transient evolution
to the final homogeneous stable steady state involves a
process of pattern growth and decay. Most of the usual
mathematical techniques used to describe the first situa-
tion seem to fail for problems involving transient pattern
dynamics.

Transient pattern formation is well documented from
the experimental point of view for different instabilities
in nematic liquid crystals [3,4]. A typical situation is
the magnetic Fréedericksz transition in which for a large
enough applied magnetic field, the nematic director does
not reorientate homogeneously, but a striped pattern
with a characteristic wavelength emerges. This pattern
can last from minutes to hours depending on the spe-
cific geometry and the material, but it finally disappears
leading to the homogeneously reoriented final equilibrium
state. For most geometries of the system, the pattern ad-
mits a good description by one-dimensional models. A
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good summary of different situations considered in this
context is given in Ref. [4]. Generally speaking, the
transient pattern is associated with the coupling of the
director field with hydrodynamic variables so that the
fastest response to the applied field is not homogeneous
in space [5]. A mechanism of wavelength selection based
on this idea of fastest response has been proposed [3-7]:
the well-defined observed periodicity has been associated
with the mode of fastest growth and its dependence with
the applied magnetic field has been considered theoret-
ically and experimentally. However, a nonlinear mecha-
nism of wavelength selection has also been invoked and
substantiated by some experimental and restricted nu-
merical studies [8]. The process of pattern formation in
nematic liquid crystals can be described in detail through
the full set of nematic hydrodynamic equations [9], which
have been consistently formulated also in the presence
of thermal fluctuations [6]. Such equations have been
discussed in a variety of situations [3,4, 7, 8]. These de-
tailed discussions of a rather complicated set of equations
might hide some general features of the problem of tran-
sient pattern formation and development. Our aim in
this paper is to propose and analyze a generic model for
one-dimensional transient pattern formation which de-
scribes general features of these problems. It is obvious
that a precise comparison with experiment would require
the consideration of some specific details. Nevertheless,
we hope that general aspects as wavelength selection (if
such selection does occur), mechanisms of pattern evolu-
tion, and the important issue of finite-size effects can be
understood from this general model.

The model we analyze is defined by the following equa-
tion for a scalar variable 6(z,t):

b(z,t) = (a — 82) (826 + co — b8®) . (1)

The dot denotes temporal derivative. The linearized ver-
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sion of this equation in Fourier space

éq = w(q)bq (2)
involves an amplifying factor
w(g) = (@+¢*)(c—g¢%) . (3)

As seen in Fig. 1, this factor is such that for ¢ > 0
there is a range of unstable modes for which w(g) > 0.
If a < 0 the range of unstable modes does not include
the mode ¢ = 0 and the linear regime is qualitatively
the same as for the well-known Swift-Hohenberg equation
[10] used to describe the formation of stationary patterns.
Here we are interested in the situation in which ¢ > 0
for which the range of unstable modes is (—¢c, g.), with
ge = /2. If, in addition, a < ¢, the mode of fastest
growth becomes different from zero: ¢, = [(c — a)/2]/2.
This implies the existence of an instability that for 0 <
a < c involves the linear growth of a pattern with a
characteristic periodicity given by ¢,,. Throughout the
paper we fix ¢ = 1 and study (1) with periodic boundary
conditions.

Equation (1) can be motivated as an approximation to
the complete nematodynamic equations describing the
magnetic Fréedericksz transition in a nematic. Under or-
dinary assumptions for the twist geometry [9] one obtains
coupled equations for the angle orientation 8(z) of the di-
rector and a component of the velocity field, both in a
plane in the middle of the sample. The approximation of
negligible inertia permits the elimination of the velocity
variable. This gives rise to an effective wave-number-
dependent viscosity which appears as a g-dependent ki-
netic coefficient [6]. For small deformations 6 and in the
small wave-number limit [11, 12] one recovers Eq. (1),
where the factor (a — 82) is the remaining part of the
effective viscosity [13].

Within the context of model (1), we address in this
paper three general questions associated with transient
patterns dynamics in the intermediate nonlinear regime
after the initial pattern emergence and before the late
stages in which it disappears. The first question is the do-
main of validity of the linear theory and the possible exis-
tence of a wavelength-selection principle in the nonlinear
regime. The second question is the characterization of
the mechanism governing pattern evolution. Third we
examine finite-size effects which could be preponderant

a<0 a=0

c>0 w(a) c>0
vl ]
O<c<a O<ao<c

FIG. 1. The amplifying factor w(q) of Eq.
different cases. See text for details.

(8) in four
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in the question of a nonlinear selection principle. Our
results indicate that for large systems a wavelength is
initially selected in the linear regime but, on the average,
it then changes monotonically in time approaching a final
homogeneous state. During this evolution the system can
be described as composed of several regions which evolve
independently of each other. A local mechanism of roll
destruction operates in such regime. This description is
substantiated by giving evidence of a factorization of the
size dependence of the structure factor for systems of dif-
ferent size. This factorization reveals the presence of un-
correlated regions of a characteristic length. This length
is essentially time independent in the regime of dynamical
evolution examined. For systems of size comparable or
smaller than this length an apparent nonlinear selection
of a wavelength occurs: configurations of well defined pe-
riodicity, which is not the one linearly selected, last for
very long times, before evolving to the final homogeneous
state. The reason why such periodic configurations are
long lived is that they correspond to unstable stationary
solutions which, for small system sizes, are approached
in the initial transient regime. For large system sizes
such configurations are not approached in the dynamical
evolution from a typical initial configuration. A charac-
teristic of small systems is that a very small number of
modes are linearly unstable at ¢ = 0 so that a descrip-
tion in terms of coupled ordinary differential equations
for the amplitude of a few modes seems natural. We
show that such description can give qualitatively wrong
results. The basic simple reason for this fact is that such
modes are not stabilized by nonlinear terms in the full
equation, because they are not associated with stable so-
lutions.

We finally wish to mention the relation of our analy-
sis with another well-known physical situation in which
transient patterns occur, namely spinodal decomposi-
tion [14]. The process of phase separation of a binary
mixture quenched to a temperature below the critical
temperature also displays a transient pattern with a
time-dependent characteristic length. This analogy was
pointed out many times [3]. However, in addition to dif-
ferences in time scales [6], there is another important
difference between this problem and the one of transient
patterns in nematic liquid crystals and it is that the dy-
namics of spinodal decomposition is constrained by a con-
servation law. The initial [6, 15] and very late stages [11]
of pattern dynamics in the magnetic Fréedericksz transi-
tion have been already studied in some detail by analogy
with the problem of spinodal decomposition, but no de-
tailed study seems available for the d = 1 intermediate
nonlinear regime in which we are here interested

The outline of this paper is as follows. In Sec. II, we
discuss the main characteristics of the model given by
(1) and its stationary configurations, then we compare it
with other related models. Section III describes our nu-
merical results for large systems. Finally the description
of a small system in terms of the amplitudes of a few
modes is discussed in Sec. IV. Throughout the paper we
restrict ourselves to d = 1 and we neglect thermal fluc-
tuations. The role of fluctuations and two dimensional
effects will be analyzed elsewhere.
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II. A MODEL FOR GENERIC ASPECTS
OF TRANSIENT PATTERN FORMATION

A first important property of the model given by Eq.
(1) is that it can be written in a potential form

6() = T3t )
where the kinetic coefficient I" is the operator

'=a-02, (5)
and F[6] is

= [a [—%e(zf + 2o+ %laze(w)F]
(6)

From (1) we can show that F is a good Lyapunov func-
tional, in the sense that dF'/dt < 0:

dF[t9 6F|6) ; SF[6]..6F6)
- [ o5510@) =~ [ Ao Vs <O

(7

The last inequality holds because I is a positive definite
operator (if a > 0), as can be seen from its expression in
Fourier space.

The picture of the evolution is then that the system
evolves, continuously decreasing F'[6], until a minimum
of F[f)] is found, thus stopping the evolution. Note that
such minima, stationary solutions of (1), are independent
of I and of the parameter a and they are solutions of the
simpler equation

9:%0(x) + 6(z) — bO(x)3 =0 . (8)

An independent demonstration of the fact that with pe-
riodic boundary conditions the only stationary solutions
of (1) (for a > 0) are those of (8) can be set up by writing
(1) with 8(z) = 0 as the set of two equations:

8:20(z) + 6(z) — b8(z)* = y(z) , (9)

Ty(z) =0 . (10)

Equation (10) is a linear second-order ordinary differen-
tial equation whose general solution is a linear combina-
tion of two exponentials. Only the combination leading
to y(z) = O satisfies periodic boundary conditions, so
that (9) reduces to (8). The qualitative features of all
the stationary solutions of (1) can be discussed by writ-
ing (8) as [16]

d?6(z) _ dv(8)
dz?2 ~  df (11)

which resembles a Newton equation for the motion of a
particle of unit mass in a potential

b 4

V(o) = ;92

the role of “time” being played by the coordinate x. From
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this analogy, the bounded solutions of (8) can be classi-
fied in three types: (a) the uniform solutions 8(z) = 1/vb
and 6(z) = —1/+/b, (b) the uniform solution 8(z) = 0,
and (c) a family of solutions represented by nonlinear os-
cillations in the potential V(#). The maximum possible
frequency corresponds to oscillations of small amplitude,
around # = 0, 27 being its period. The minimum fre-
quency corresponds to trajectories in which 6(z) remains
mostly near +1/v/b, with short excursions (domain walls)
linking both states. In summary: there are periodic so-
lutions to (8), which we denote by ,(z), each one con-
taining a different fundamental wave number ¢ and its
harmonics, with 0 < ¢ < 1.

An important question is the linear stability of such
stationary solutions. In order to consider this question,
Eq. (8) does not contain enough information and the full
dynamical equation (1), linearized around the stationary
solution being checked, is needed. Linearization around
the uniform solutions is immediate and it is found that
the solution 6§ = 0 is linearly unstable, and both 6 =
1/+/b and 8 = —1/+/b are linearly stable. These are also
the absolute minima of the functional F[6], so that they
represent the stable equilibrium phases. The analysis of
the stationary periodic solution ¥4(x), of fundamental
wave number ¢, is performed with the introduction of
0(z,t) = Yq(z) + A(z,t) and linearization in A. The
resulting equation is

A(z,t) =T [1 — 3byy(z)? + 8:%]) A(z, t) . (13)

The general analysis of this linear equation with periodic
coefficients requires of Bloch or Floquet theory [17]. A
simplified situation was considered in [11] for the case
in which ¢ is small, so that the solution consisted basi-
cally of domains of the stable phases separated by thin
domain walls. In that case it was found that the peri-
odic solutions were linearly unstable. It can be gener-
ally shown that all the periodic solutions are unstable
by studying its stability with respect to a uniform per-
turbation. The argument is as follows: Let us introduce
the initial perturbation A(z,t = 0) = Ay, Vz, and con-
sider the initial time ¢ = 0%, when A(z,t) = Ap. Let
be x = 0 one of the places in which ¢, = 0. Near
z =0, 1/)q(:c)2 will have a positive parabolic shape, so
that 32 [he(z =~ 0)2] > 0. Introducing this in Eq. (13)
we find that sgn[A(z ~ 0,t = 0%)] = sgn[Ao], showing
the instability of ¥, because a uniform initial perturba-
tion grows. The consequence of the instability of all the
periodic solutions is that none of them can represent the
final state of the evolution, as long as a nonzero ampli-
tude is given in the initial condition to the mode with
wave number ¢ = 0, or if noise is present in the system.

After this summary of the general properties of Eq.
(1) it is interesting to compare them with the properties
of other related models studied in the literature. To this
end we write (1) (with ¢ =1) as

6 = —0820 + (a — 1)026 + af — ab8® + b026° . (14)

For 0 < a < 1, the uniform solution 8 = 0 is unstable
and the linear analysis predicts the growth of modes with
wave number g # 0. It is then natural to relate this equa-
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tion with others for which a periodic pattern grows from
the unstable uniform solution. An archetypal example of
such equations is the Swift-Hohenberg equation [10]

6=1[v2-(1+02)%6-0b6° . (15)

The linear stability analysis of this equation leads in fact
to the same linear growth spectrum as in Eq. (1), ex-
cept for an important difference in sign in the regions
around ¢ ~ 0: the modes in this region slowly grow in
our model (a > 0), whereas they are damped in the Swift-
Hohenberg case (due to the fact that 0 < 42 < 1). Other
aspects of the initial stages in pattern development are
qualitatively similar for both models. Another more fun-
damental difference is that the Swift-Hohenberg equa-
tion admits a family of stable periodic solutions, one of
which will give the final state of the evolution, whereas
(1) admits no stable solutions other than the uniform
6 = +1/v/b. This difference comes from a combination
of the different sign of ¥2 — 1 versus a and of the addi-
tional term 926(z)3 in (14). Thus, the evolution at late
times will be completely different in both cases.

These differences have important methodological con-
sequences: in order to study pattern formation in cases
exemplified by the Swift-Hohenberg equation, a common
strategy is to take as a small parameter the range of
unstable modes around the most unstable one, which is
small near a bifurcation point, and then obtain a non-
linear equation for the amplitude of the most unstable
mode. The form of this equation is greatly determined
by the symmetries of the problem, and by the assump-
tion of being the first step in a uniform expansion. This
strategy cannot be applied to our problem, because the
characteristic shape of the linear instability spectrum in
(3) with a fastest growing mode g,, # 0 is only obtained
for ¢ > a which in our case (c=1) is far enough from
the bifurcation point (¢ = 0), and the band of unsta-
ble wave numbers is as large as the wave number of the
most unstable mode (because the mode with ¢ = 0 has to
be included in the description). Then bifurcation theory
and normal forms are of no much help in our problem.
In addition, the fact that the mode of fastest growth is
not associated with a stable solution precludes the use
of approximations based in the saturation of the linearly
fastest growing mode, such as those in [18].

Another class of models with which it is natural to
compare our model is the one represented by the Fisher-
Kolmogorov equation, also known as Ginzburg-Landau
equation for a real variable, or, with an added noise term,
model A of critical dynamics [14, 19]:

6(z,t) = 826(z) + 6(z) — bO(x)® . (16)

The stationary solutions of this equation are exactly the
same as in our model, and the only stable solutions are, as
in our case, the uniform = +1/+/b. In fact, the analysis
in [11] shows that at very long times, the dynamics of
the domain walls in (1) is the same as in (16). The main
difference is, however, in the conditions created by the
initial linear instability if a < 1: The fastest growing
mode in (16) is always the one with wave number ¢ = 0,
which corresponds also to the final state. Then theories
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such as those in [18] are good descriptions of the evolution
for all times.

In some sense, the time evolution of our model is a
crossover between a linear behavior close to that in the
Swift-Hohenberg model, and final stages similar to those
in (16). Perhaps this is why the closest related model is
the one represented by the Cahn-Hilliard equation, de-
scribing spinodal decomposition in binary mixtures and
alloys. It is also known, when a noise term is added,
as model B of critical dynamics [14, 19]. Formally, this
model is obtained by putting a = 0 in Eq. (1). One-
dimensional (d = 1) spinodal decomposition is physically
artificial and consequently has not been studied in great
detail from the physical point of view. Standard non-
linear theories of spinodal decomposition such as that
of Langer, Bar-on, and Miller [20] do not seem applica-
ble in d = 1: since they are based on the competition
between locally ordered equivalent stable states they do
not include the competition between different wave num-
bers [21], which seems essential in d = 1. For the Cahn-
Hilliard equation in d = 1 we have also an initially peri-
odic structure which coarsens in time to approach ¢ = 0.
The main difference with our model is that the spatial
integral of 6(z) is conserved by the Cahn-Hilliard equa-
tion, so that a completely uniform solution cannot be
approached unless [dz6(z,t = 0) = 0. In the generic
case, the final state is the coexistence of two domains of
the stable phases and not only one as in our case. Thus,
the final stages of evolution should be very different in
both models [11]. The fact that, in addition to the fastest
growing mode, the mode with ¢ = 0 is also linearly unsta-
ble in (1) implies a wide range of unstable wave numbers
in the initial regime, leading to a wide spectrum during
the nonlinear stages. Time-dependent configurations do
not approach closely any of the unstable periodic solu-
tions. The consequence is that theories such as that of
Langer [22] assuming that the system is close to one of
the stationary unstable solutions at each time, will be
only of certain usefulness at extremely long times [11],
where the mode with ¢ = 0 will be the dominant one.

III. NUMERICAL STUDY OF TRANSIENT
DYNAMICS FOR LARGE SYSTEMS

The time evolution of 6(z,t) from an initial condi-
tion close to the unstable steady state 6(z) = 0 has been
calculated by solving numerically Eq. (1) on a grid of N
points with periodic boundary conditions. In the remain-
ing part of the paper, we fix the value of the parameters
in (1) to a = 0.002, b = 3, and ¢ = 1 as appropriate
for typical values of the parameters in the nematic hy-
drodynamic equations [8, 13]. In this case g, = 0.7.
We have used a centered finite-difference scheme up to
order (dz)* to approximate the spatial derivatives. A
predictor-corrector method with one step has been used
to determine 6 at t +dt. A suitable value for dz has been
determined integrating the equation in the linear regime
and comparing the growth rate of the unstable modes ob-
tained numerically with the one calculated analytically.
A value of dz = 0.25 has been thereby chosen. The most
unstable mode has a wavelength of A\, = 27/gm, =~ 8.98,



47 ORDERING AND FINITE-SIZE EFFECTS IN THE DYNAMICS . ..

which corresponds to approximately 36 grid points. The
length of the system is L = Ndx. We have considered
a range of system sizes from L = 64 to L = 256 and
we have always taken periodic boundary conditions. The
time step used is 104, For dt larger than 0.004 numer-
ical instabilities were observed. For values of dt ranging
from 2 x 1074 to 5 x 10~° the discrepancies in 6(z) after
five units of time of integration were smaller than 10~7.
The initial condition is written as

(z,0) = Zaqn (O)eiqnm ) 17)

where the sum is over modes g, = 27n/L and it has been
taken to run only over the unstable modes —¢q. < g, < qc.
As we are interested in the mode competition, all the
unstable modes were given the same initial amplitude e.
Since #(z) has to be real we took 6,,(0) = 6*, (0) =

ee'®an | where ¢y, is a random phase shift for n # 0 and
¢qo is 0 or m. To obtain different initial configurations
of 8(x) the set of random-phase shifts ¢4, was changed
but not the amplitude €, which remained fixed to the
value € = 10~%. Hence, when talking about a different
initial condition we mean a different set of random-phase
shifts. This choice gives a null ensemble average of 6(z).
All the averages considered in this paper are understood
as ensemble averages over different initial configurations.

In addition to our transient dynamics study, we have
also examined the existence of periodic stationary solu-
tions [type (c) in Sec. II]. Starting with a configuration of
the form 6(z) = esin(g,x) involving a single mode g, < ¢,
with an amplitude € = 2x10~4, the pattern develops with
the growth of its harmonics until a stationary pattern is
obtained. We know that this pattern is unstable and
the velocity of its decay has been tested numerically by
adding a small amplitude to all the modes with g smaller
than g.. The decay was found to be always extraordi-
narily slow. This means that these unstable stationary
solutions can be long lived. When the initial condition
(17) is used, the pattern develops in a way that none of
these periodic stationary patterns is approached during
the transient dynamics provided the system size is large
enough (see next section).

Our results for the transient dynamics study are sum-
marized in Figs. 2, 3, and 4 for the evolution of the
configuration 6(z, t), the associated structure factor, and
the number of rolls of the pattern respectively. General
features of the time evolution that manifest themselves in
specific ways in these figures are the following: A linear
and a nonlinear regime of evolution can be clearly iden-
tified. In the linear regime the pattern is formed. In the
nonlinear regime no mechanism of wavelength selection
occurs, but domains of a characteristic size exist. These
domains include several rolls and evolve in time in a way
essentially independent of each other.

In Fig. 2(a), the time evolution of the pattern 6(z)
for a particular initial condition is shown. The periodic-
ity related to the linearly most unstable mode becomes
apparent on #(z) in the initial stages. Afterwards, we
observe that rolls disappear continuously. The presence
of regions of different periodicities can be observed. For
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FIG. 2. (a) Time evolution of §(z) from a particular ini-

tial condition and L = 256. The vertical scale is the same for

all times. (b) Local wave number g(z) for the configuration
at t = 40 of (a).

example, at t = 40 around seven of these regions are
distinguished. A systematic method of identifying such
regions is to find the power spectra of small regions in
the pattern, and identify the maxima in these local spec-
tra with a dominant local wave number [2]. Explicitly,
we have multiplied the configurations in Fig. 2(a) times
a Gaussian of width ¢ = 10, unit height, and centered
at . Then we have calculated the maxima in the power
spectra of such localized patches as a function of z. Fig-
ure 2(b) shows the result of one of such analysis, at time
t = 40, identifying an z-dependent dominant wave num-
ber. At this time the average wave number has already
deviated from the linearly most unstable one (g,, = 0.70)
so that one has entered the nonlinear regime. In Fig. 2(a)
we can also see that, at each time, a roll is disappear-
ing in that region whose local dominant wave number is
largest. Note that the disappearance of a roll occurs lo-
cally since this does not affect other regions [compare for
example §(z) at t = 100, 200, and 300]. At the longest
times arrived, there are regions were 6 is already close
to the value of the uniform solution 6 = +b~1/2 ~ 0.58.
After this time, it is expected that the pattern evolves
towards configurations where regions of § = b~/2 and
6 = —b~1/2 coexist separated by walls. The separation
between these walls will be rather large and the pattern
evolution should be described by the theory in [11].

We define the structure factor S(g,t) associated
with @(z,t) from the discretized configuration {f(z, =
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ndz,t),n=1,..,N} as

S(g,t) = 16g] - (18)
The vertical bars denote the modulus of a complex num-
ber and

1 .
9,1 = N E e_lana(mn,t). (19)
n

With this definition, S(q) is independent of system size
for a uniform configuration 6(z,,t). It is also indepen-
dent of N during the linear regime. The allowed values of
q are of the form n dg with n an integer between —N/2
and N/2 and dg = 27/L. Figure 3(a) shows the time
evolution of S(g) averaged over 50 independent initial
conditions of the form (17). Figure 3(b) shows the time

(a)
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evolution of the area A(t) = [dqS(g,t) for 4 of these
independent initial conditions. Since linear theory pre-
dicts that the structure factor is independent of the ini-
tial phases ¢, , the time at which the different curves in
Fig. 3(b) begin to separate signals the end of the linear
regime. This happens around ¢t ~ 20. During the linear
regime the structure factor in Fig. 3(a) is shown to grow
with a maximum around the linearly most unstable mode
am = 0.7.

After the linear regime, and reflecting a continuous
elimination of rolls, the maximum of S(g,t) shifts to-
wards small ¢’s as times goes on [see Fig. 3(a)]. This
continuous drift characterizes the elimination of rolls and
it eliminates the idea of a nonlinearly selected wave-
length. During the nonlinear regime the structure fac-
tor develops important contributions for short and long

(b)
T T T
A |
0.6 n
0.4+ 1
0.2F .
0.0 L L
0 10 20 30 40
1

(©)

I ] "

A B NELE BE L SIS I R
S(q)
0.10F R
r
0.05 - VRN :
0.00 P
00 02 04 06 08 1.0 1.2
q
20t ,
0 200
FIG. 3.

400
t

600

(a) Time evolution of the structure factor averaged over 50 runs for L = 128. Times showed are, from bottom to

top, t = 20, 25, 30, 50, 100, 200, 500, and 750. (b) Area A(t) of S(g,t) for four independent runs (L = 128). (c) Correlation

length [ as a function of time (see text for details).
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wavelengths which indicate the existence of strong com-
petition between many modes. The existence of different
domains in the configuration 6(z,t) can be characterized
from the structure factor by defining a correlation length
lc = 27 /w, where w is one half of the width of the peak of
the averaged S(g,t) at its mean height. This length has
been plotted in Fig. 3(c) for a system of size L = 128. It
is around 1/3 of the system length for this system size.
Hence, we talk about approximately three uncorrelated
zones in the system which evolve independently. The va-
lidity of this view is enhanced by the evolution observed
in systems with L = 256, as discussed above, and also
with L = 64: w turns out to be roughly independent
of system size and time (during the nonlinear regime we
consider here). The domain size is probably determined
by the interplay between the intensity € of the initial con-
dition and the shape of w(q).

Figure 4 shows the average number of zeros per unit
length of 6(x) as a function of time. This quantity identi-
fies the number of rolls per unit length of the pattern and
it measures the “average” wave number in the system.
The inset in this figure represents the average over initial
conditions of the number of zeros per unit length versus
a mean wave number defined as (¢) = [ ¢S(q,t)dq/A(t).
The upper part of the curve in the inset corresponds to
the very early initial regime. Beyond this regime the
number of zeros is linearly related to (g), so that a de-
scription in terms of any of these quantities is equivalent.
The number of zeros per unit length is seen to grow dur-
ing the linear regime of pattern emergence reaching a
value around 0.22, which corresponds to the global wave
number selected by fastest linear growth, ¢, = 0.7. This
number of zeros remains constant for a little while be-
yond the end of the linear regime at t ~ 20. Later the
average number of zeros decreases monotonically in time
making again clear that we cannot identify any nonlin-
early selected wave number. This result is different from
the one found in Ref. (8] for a similar system. We will
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FIG. 4. Number of zeros per unit length in 6(z) vs time
for L = 128 (solid line) and L = 256 (dashed line). In the
inset the same quantity is plotted vs (¢) (for L = 128). For
L = 128 and 256 an average over 50 and 20 initial conditions,
respectively, was taken.
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show in Sec. IV that an apparent wavelength selection
might occur due to finite-size effects. We have attempted
to obtain a growth law for the decay process in Fig. 4.
The decay is certainly slower than the one given by a
power law. A relation (¢) = 21.3 — 1.27Int seems to fit
the curve for ¢t > 90. Nevertheless, a decay (Int)? could
also be fitted. Determining the exact law and an accu-
rate exponent will need a considerable increase in the
statistics and it is not our goal here. We note that a log-
arithmic decay is the one expected from one-dimensional
domain-wall dynamics [11, 22], but the largest times in
our simulations are still far from the regime in which the
pattern is composed of domains of the equilibrium phases
separated by thin walls.

An important question in relation to the existence of
domains of a characteristic size is the dependence of the
transient dynamics on the system size L. It is already
seen in Fig. 4 that the evolution of the number of ze-
ros per unit length is essentially the same for two system
sizes. We have checked that the time scales of evolu-
tion are independent of system size for L 2 50. Taking
advantage of this fact, a systematic study of the depen-
dence on L of the temporal evolution of the structure
factor can be carried out by the analysis of the evolu-
tion of the area A of the averaged S(g,t). This area is
shown in Fig. 5(a) for systems of different size. From
t = 75 to the longest time considered (¢ = 200), a rela-
tionship of the form A(L,t) = L*f(t) is satisfied, with
a = —0.49 £ 0.01 = 1/2, for system sizes large enough.
Figure 5(b) shows the validity of this size-dependent be-
havior. The combination of this result with the existence
of size-independent time scales of evolution implies that
the dependence of the structure factor on system size
factors out:

S(g,t,L) = L™Y/?F(g,t) . (20)
This finite-size scaling form contrasts with the one found
in the dynamics of order-disorder transitions and of spin-
odal decomposition [23] in d > 2, where the scaling func-
tion F depends on system size as F(qL,t/L?), and the
exponent « is 0 instead of —1/2. The reason for such
difference can be elucidated by noting that the exponent
a = —1/2 is a manifestation of the fact that the system
is composed of uncorrelated regions of a size independent
of the system size. This can be seen from the following
argument: If the system is made of many uncorrelated
regions, the law of large numbers implies that the sum
in (19) approaches a Gaussian variable of standard de-
viation proportional to the square root of the number of
independent zones. Since the size of the zones is inde-
pendent of L, this standard deviation is proportional to
L2, The average of the modulus of a complex Gaus-
sian variable is proportional to its standard deviation,
and the normalization factor 1/N = dz /L present in def-
inition (19) completes the factor L~!/2 in (20). This
argument confirms again the important dynamical role
of the “domains of different wave number” identified be-
fore. To further stablish this picture, we note that the
law A ~ L~=1/2 should fail when there is only one or less
than one domain in our system. According to the results
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FIG. 5. (a) Area of the averaged S(g) as a function of

time for systems of different sizes. For size L = 128 the
structure factor has been averaged over 50 different initial
conditions. For the other system sizes the average is over 20
initial conditions. (b) The same area scaled by L*/2. (c) Area
of the average over 40 initial conditions of S’(g,t) in Eq. (21).

of Fig. 3(c), this will happen for L < 50 (N < 200). This
has been checked with a system of size L = 32 (IV = 128)
so that it is well described by a single local wave number
during the time interval included in Fig. 5(b).

It should be stressed that although the precise value
found for a, & = —1/2, is a consequence of the definition
(18) and (19) used for the structure factor, the factor-
ization of the L dependence of the structure factor is
not a trivial consequence of such definition, but rather
it reflects the physics of uncorrelated regions described
above. Indeed, if one uses an alternative definition of the
structure factor:

S'(q,t) = N |6g)* , (21)

the argument above implies that for large enough sys-
tems and after the linear regime, a factorization such as
(20) should hold, but with @ = 0. Such a relation con-
trasts again with the result for the description of order-
disorder transitions and spinodal decomposition in d > 2
for which S’(q,t) = L4F(qL,tL?) [23]. To provide fur-
ther evidence of the factorization of the L dependence of
the structure factor we show in Fig. 5(c) the average of
the area A’(t) of S’(q) over 40 different initial conditions
for systems of different size. As predicted, no size depen-
dence (a = 0) is found after the linear regime for systems
of L = 64, 128, or 256. However, A’(t) for a smaller sys-
tem (L = 32) deviates from the behavior found for larger
systems indicating the breakdown of a relation such as
(20) (now with o = 0) for small systems. A discussion of
the dynamics of these small-size systems is given in Sec.
Iv.

In the dynamics of conventional phase transitions such
as order-disorder transitions or spinodal decomposition
in d > 2 one can also identify independent domains con-
taining some “ordered phase.” The difference with our
model is that in the usual case such an ordered phase
is close to an equilibrium stable phase. Then domains
growth and coalesce until one (or two in the case of spin-
odal decomposition) of them reaches the size of the whole
system. This domain growth and saturation produces the
t/L* dependence of the scaling function in time. In our
case, the domains contain an “unstable periodic phase,”
so that there is no driving force for growth, and the do-
mains keep their size roughly constant [see Fig. 3(c)],
but continuously reduce their wave number by local roll
destruction. This process will presumably continue un-
til each domain contains only one of the uniform stable
phases +b=1/2 and then a growth of the domains sim-
ilar to that in the model (16), as described in [11], is
expected.

IV. SMALL SYSTEMS

Following our discussion above, we will call a sys-
tem “small” when its size is smaller than the correla-
tion length discussed in the preceding section (I, ~ 50),
so that it contains effectively only one domain of quite
uniform wave number. In this context it is worth re-
minding here how different characteristics of a system
reflect in their Fourier description. First, for a small sys-
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tem, modes are more separated than in a larger system
(dg = 27/L). Second, the difference between a discrete
or a continuous (in z) system is that in the first case
there is a minimum length dx so that there appears a
maximum wave number 27 /dx and only a finite number
of modes is at play if L is finite. In the continuum case
(dz — 0), the wave number cutoff goes to infinity and
we have an infinity of modes, but their separation con-
tinues to be determined by L. As usually recognized, a
physically continuous system admits a discrete descrip-
tion of minimum length dz when 27 /dz is larger than
any wave number relevant to the evolution of the system
under study.

To study the behavior of “small systems,” we have per-
formed numerical integrations of Eq. (1) for a range of
values of L for which only three modes are linearly un-
stable at t = 0: ¢, = ndg, n = 0,1,2. The mode ¢; is
the most unstable one. The explicit results for the am-
plitude of the three unstable modes and the first linearly
stable mode for the case L = 18 (N = 72,dq =~ 0.349)
are shown in Fig. 6(a), as obtained from the direct nu-
merical integration of (1) with the initial condition (17).

(a) (b)
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FIG. 6. (a) Amplitudes 6,4, for n = 0,1,2, and 3 (6,

being the first linearly stable mode) obtained by integrating
Eq. (1) for a particular initial condition of the form (17)
with L = 18. (b) The same amplitudes obtained from Eq.
(22) (dotted line), from Eq. (22) enlarged to include mode g3
(dashed line), and including up to mode ge (solid line).
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The results indicate that the mode ¢; will dominate the
pattern for a long time after an initial short regime in
which the fastest growing mode g2 dominates. In such
small systems, a well-defined periodicity is observed dur-
ing a long-time interval, so that an apparent.nonlinear
selection of the mode ¢; occurs. This happens because
the stationary unstable solution 94—4,, dominated by a
mode and its harmonics, is closely approached during
the evolution, in contrast with what we obtain for larger
systems. Such configuration is, nevertheless, unstable.
The pattern finally decays and the configuration becomes
space homogeneous, as expected. This happens at a time
t ~ 1.6 x 105 . This time is not shown in Fig. 6 and
should be compared with the time scale in that figure.
For such small systems with only three linearly unstable
modes, and given that the linearly stable modes have a
very small amplitude during the whole time evolution,
it is natural trying to describe the dynamics in terms of
three coupled ordinary equations for the complex ampli-
tudes g, 84,, and 6y,, all the other amplitudes assumed
to be zero. Truncation to a small number of modes is
a largely used technique in the literature [24]. Equation
(1) is written in Fourier space including only the modes
qn = ndq, with n = 0,1, and 2 as

éqn = w(qn)bq, — bla + g Z 04:6q;6q,—qi—aq;-

4,j=0,1,2
(22)

The dependence on system size appears through the val-
ues of g,, which depend on dq.

Equation (22) presents stationary solutions whose sta-
bility properties are different from the corresponding so-
lutions of (1). For example, 8,, = [(1 — ¢3)/(3b)]*/2 and
all the other amplitudes equal to zero are a stationary so-
lution of (22). When the linear stability analysis around
this solution is carried out, the result depends on the
value of dq: The solution is stable against homogeneous
perturbations if dg < 871/2 = 0.354, for any value of a.
It is stable against perturbations of wave number g; only
if dg < 7712 = 0.378 (this value again is independent
of a). This behavior contrasts with the exact properties
of Eq. (1), well reproduced by its numerical integration
discussed above, for which there are no stable solutions
other than the one associated with qo, independently of
the value of dg = 27/L. The differences in stability prop-
erties come from the truncation to a small number of
modes, equivalent to replacing the spatially continuous
system by a discretized version. Such differences antic-
ipate that a description in terms of a few modes might
be qualitatively incorrect. To substantiate this point, we
have numerically solved Eq. (22) with dg = 0.349, the
value associated to L = 18, and for which the stability
properties of the solutions of (1) and those of the trun-
cated model (22) are different. The same initial value
as in the numerical integration shown in Fig. 6(a) was
given to the modes included in (22). Figure 6(b) (dotted
line) shows that the fastest growing mode g2 dominates
the final state, in contrast with the numerical integration
of Eq. (1).

When Eq. (22) is enlarged to include the mode g3 =
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3dgq, which is linearly stable at t = 0, the stationary solu-
tions in which only one modal amplitude is different from
zero are the same as above, but their stability properties
change. For example, the stationary solution dominated
by g2 becomes now unstable for dg > (10/115)1/2 ~ 0.295
[25]. Numerical solution of (22) including this fourth
mode and keeping dg = 0.349 shows [dashed line in Fig.
6(b)] that 6,, decays at t ~ 300. Then, a state domi-
nated by q; is approached, as in the integration of Eq.
(1) but, in contrast with that continuous model, this is
here the final asymptotic state. In this state g3 is slightly
developed and the other modes have a small amplitude.
Again, this is a stable solution of the set of four equations
and the mode ¢ = 0 is not yet reached. Figure 6 (solid
line) shows that inclusion of up to seven modes alters the
time scales, but not the qualitative picture.

As a conclusion, using only the set of linearly unstable
modes, or only some additional ones, is not enough to de-
scribe the time evolution of the continuous system (which
we expect to be well described by the simulations with 72
grid points, equivalent to 72 modes). A large number of
linearly stable modes are relevant, although their ampli-
tudes always remain very small. It is worth noting that
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sets of equations containing the linearly unstable modes
or only a few more are often used with success in the
literature [1,24]. The source of success in these cases is
not usually explicitly stated. It becomes clear from the
discussion of the example above that the truncation to
the set of linearly unstable modes can be useful, at most,
when these modes are associated with stable stationary
solutions of the problem. Otherwise, such truncations
can produce incorrect results.
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